

Unidad 0: Matemática - N°5

iAprendo sin parar!

Guía de ejercicios

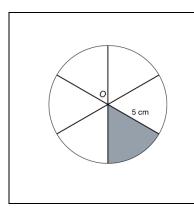
Estimado estudiante:

Con la siguiente guía, aprenderás a resolver problemas que se relacionan con aplicar las expresiones algebraicas de perímetro y área de sectores y segmentos circulares, a partir de ángulos centrales específicos. Al finalizar, sabrás reconocer el ángulo central y podrás desarrollar la expresión que permita obtener los valores del área y del perímetro.

Objetivo de la clase: Deducir la expresión que permite obtener los valores del área y del perímetro de sectores y segmentos circulares respectivamente, a partir de ángulos centrales de 60°, 90°, 120° y 180° por medio de representaciones concretas.

Actividad N°1

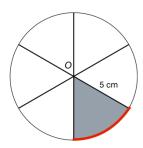
1. Dada la siguiente circunferencia de centro ${\it O}$.



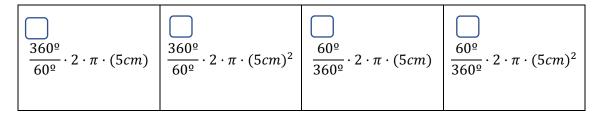
- a) ¿Qué parte del círculo es el sector circular?
- b) ¿Cuál es la medida del ángulo del centro?
- a. ¿Cuál de las siguientes expresiones representa la parte del sector circular relacionada con la medida del ángulo?. Marca con una X la respuesta correcta.

360⁰	60º	180º
$\frac{360^{\circ}}{60^{\circ}}$	60º 360º	60º

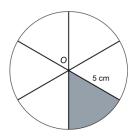
b. Observa el arco de la circunferencia marcado.



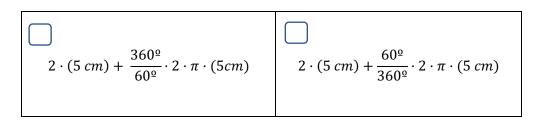
¿Cuál de las siguientes expresiones permite calcular la longitud del arco de la circunferencia? Marca con X la respuesta correcta.



c. En la siguiente circunferencia de centro O se encuentra marcado un sector circular.

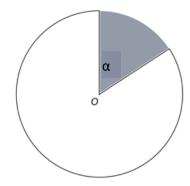


¿Cuál de las siguientes representaciones permite calcular el perímetro del sector circular? Marca con una X la respuestac correcta.



2° medio

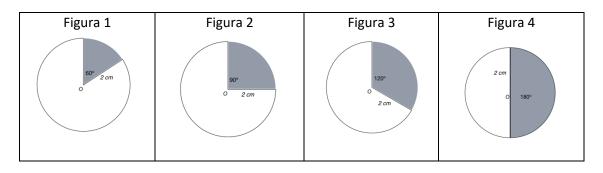
d. En el círculo de centro \mathcal{O} .



¿Cuál es la expresión algebraica que permite encontrar el perímetro del sector circular y el área, considerando que un ángulo cualquiera con medida α ?

Actividad N° 2:

1. Dadas las siguientes circunferencias de centro $\mathcal O$.



a. ¿Cuál es la parte del sector circular que corresponde a cada circunferencia?

Para la figura 1 es	Para la figura 2 es	Para la figura 3 es	Para la figura 4 es
$\frac{60^{\circ}}{360^{\circ}} = \frac{1}{6}$	$\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$		

b. ¿Cuál es el perímetro del sector circular de las figuras 1 y 2?

Para encontrar el perímetro del sector circular de las figuras 1 y 2, debemos utilizar la siguiente expresión algebraica $P_{sector\ circular} = 2 \cdot r + \frac{\alpha}{360^{\circ}} \cdot 2 \cdot \pi \cdot r$

$$P_{sector\ circular} = 2 \cdot (2\ cm) + \frac{60^{\circ}}{360^{\circ}} \cdot 2 \cdot \pi \cdot (2\ cm)$$

$$P_{sector\;circular} = 4\;cm + \frac{1}{6} \cdot 4\pi\;cm$$

$$P_{sector\ circular} = \left(4 + \frac{2}{3}\pi\right) \, cm$$

El perímetro del sector circular de la figura 2, corresponde a

$$P_{sector\ circular} = 2 \cdot (2\ cm) + \frac{90^{\circ}}{360^{\circ}} \cdot 2 \cdot \pi \cdot (2\ cm)$$

$$P_{sector\ circular} = 4\ cm + \frac{1}{4} \cdot 4\pi\ cm$$

$$P_{sector\ circular} = (4 + \pi)\ cm$$

c. Completa el procedimiento para encontrar el área del sector circular para las figuras 3 y 4.

Para encontrar el área del sector circular de las figuras, tenemos que utilizar la expresión algebraica $A_{sector\ circular}=rac{lpha}{360^{9}}\cdot\pi r^{2}.$

Para la figura 3, el procedimiento es el siguiente:

$$A_{sector\;circular} = \frac{120^{9}}{360^{9}} \cdot \pi (2\;cm)^{2}$$

$$A_{sector\ circular} = \frac{1}{3} \cdot \pi \cdot 4\ cm^2$$

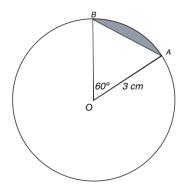
Para la figura 4, el procedimiento es el siguiente:

$$A_{sector\ circular} = \frac{180^{\circ}}{360^{\circ}} \cdot \pi (2\ cm)^{2}$$

$$A_{sector\ circular} = \frac{1}{2} \cdot \pi \cdot 4\ cm^{2}$$

2° medio

2. Dada la siguiente circunferencia de centro O. Calcular el perímetro del segmento circular.



Para calcular el perímetro del segmento circular debes sumar la longitud del \widehat{AB} más la medida de \overline{AB} , es decir, $P_{segmento\ circular} = m(\widehat{AB}) + m(\overline{AB})$.

Considerando la expresión y la información entregada, podremos encontrar el perímetro del segmento circular:

Es importante observar que el triángulo AOB es un triángulo equilátero, por lo tanto, $m(\overline{AB})=3\ cm$.

$$P_{segmento\;circular} = \frac{1}{6} \cdot 2\pi \cdot (3\;cm) + 3\;cm.$$

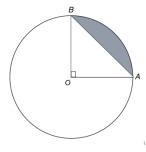
$$P_{segmento\ circular} = \frac{1}{6} \cdot 6\pi\ cm + 3\ cm$$

$$P_{segmento\ circular} = (\pi + 3)\ cm$$

Si consideramos $\pi \approx 3.14$, obtenemos que:

$$P_{segmento\ circular} \approx 6,14\ cm$$

3. Dada la siguiente circunferencia de centro O y radio 12 cm. Calcular el área del segmento circular. Considera $\pi \approx 3,14$.



Para calcular el área del segmento circular, en primer lugar deberás encontrar el área del sector circular.

$$A_{sector\ circular} = \frac{\alpha}{360^{\underline{o}}} \cdot \pi \cdot r^2$$

Luego, debes analizar el triángulo que conforma el sector circular, en este caso es un triángulo rectángulo isósceles, ya que $\overline{OA} \cong \overline{OB}$ y el ángulo de centro mide 90º.

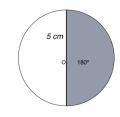
A continuación, se calcula el área del triángulo rectángulo isósceles que es:

Finalmente, el área del segmento circular es:

$$A_{segmento\ circular} = A_{Sector\ circular} - A_{Tri\'angulo\ rect\'angulo} =$$

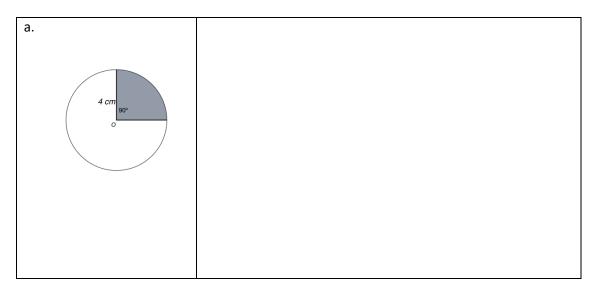
Chequeo de la comprensión

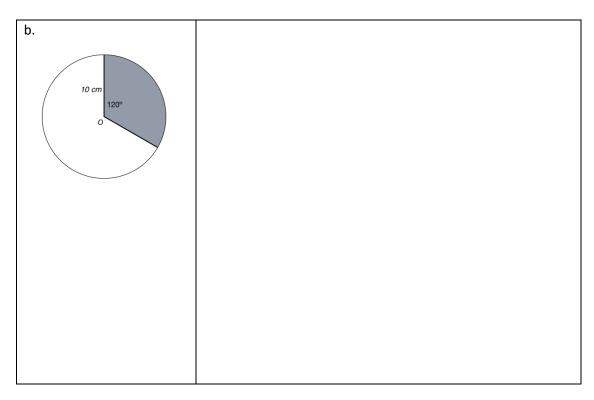
Calcular el perímetro y el área del sector circular. Considerar $\pi \approx 3,14$.



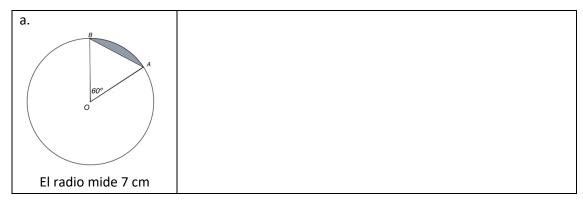
Actividad N° 3: Práctica independiente

1. Calcular el perímetro y el área de cada sector circular. Considera $\pi \approx 3,14$.

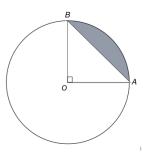




2. Calcular el perímetro de cada segmento circular. Considera $\pi \approx 3,14$.



3. Completar el procedimiento para calcular el área del segmento circular de la siguiente circunferencia de centro *O* y radio 20 cm.



	$A_{sector\ circular} =$
Primer paso	

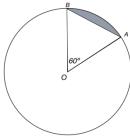
9

2° medio

Segundo paso	$A_{tri\acute{a}ngulo\ rect\acute{a}ngulo} =$
Tercer paso	$A_{segmento\ circular} =$

Actividad de síntesis (ticket de salida)

Dada la siguiente circunferencia de centro O y radio 12 cm. Verifica si cada afirmación es verdadera, colocando (V) o falsa (F) según corresponda. Justifica las falsas.



- a. _____ El triángulo ABO corresponde a un triángulo isósceles.
- b. La $m(\overline{AB}) = 12 \ cm$
- c. _____ El perímetro del segmento circular es $\frac{1}{6} \cdot 2\pi \cdot (12 \ cm) + 12 \ cm$
- d. _____ El área del triángulo ABO es aproximadamente $62,4\ cm^2$.
- e. _____ El área del segmento circular es aproximadamente 12,96 cm^2

Ministerio de Educación ¡Aprendo sin parar!

Gobierno de Chile

2° medio

Guía de ejercicios

Unidad 0: Matemática - N°5